Comments by Rafael Repullo on

Optimal Deposit Insurance

Eduardo Dávila and Itay Goldstein

Financial Intermediation Research Society Conference
Lisbon, 3 June 2016

Purpose of paper

- Characterize optimal deposit insurance
 - → In an environment with fundamental-based bank runs
 - → Taking explicitly into account fiscal costs of insurance
- Provide quantitative guidance to set deposit insurance optimally
 - → Formula for that embeds key trade-offs
 - → Calibration for US data

Setup

- Variation of Diamond and Dybvig (1983)
 - \rightarrow Return of long asset at t = 2 is stochastic
 - \rightarrow Return is observable at t = 1: source of fundamental runs
 - → But not verifiable: demand deposit contracts
- Representative bank maximizes depositors' expected utility
 - → Insurance against idiosyncratic (preference) shocks
 - → In the presence of aggregate (asset return) shocks
- To deal with multiple (panic-based) runs
 - → Equilibrium selection with sunspots

Main comments

- Highly desirable goal: provide practical advise to policymakers
 - → Could be applied to other areas of regulation
 - → For example, capital requirements
- However, model and formal analysis are pretty complicated
 - \rightarrow It is not easy to see what is driving the results
 - \rightarrow How robust are they?
- More generally, can we put so much trust in our models?
 - → To provide such precise advice to policymakers

Comments on two assumptions

- Early consumers are repaid first in case of a bank run
 - → Against assumption of unobservable idiosyncratic shocks
- Taxes to cover deposit insurance are levied on late consumers
 - → They pay in taxes what they receive in insurance
 - → Why not tax both agents (or other agents in the economy)?
 - → Or charge deposit insurance premia ex ante?

What am I going to do?

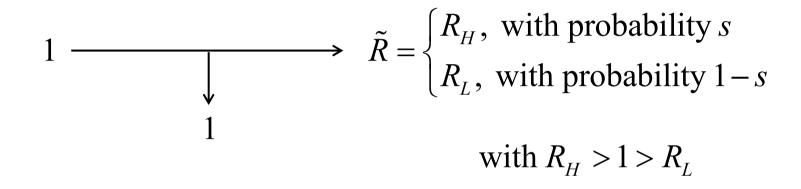
- Consider a simplified version of the model
- Using specific parameterization + numerical solutions
 - → Characterize equilibrium with deposit insurance
 - → Compute optimal deposit insurance
- Assumptions
 - → Early and late consumers get the same in a bank run
 - → Reduced form modeling of the cost of taxation
 - → Focus on fundamental runs (no sunspots)

Depositors

- Unit endowment at t = 0 and zero endowments at t = 1, 2
- Storage technology with unit return
- Proportion of early consumers $\lambda = 1/2$
- CRRA utility function $u'(c) = c^{-\gamma}$, with $\gamma > 0$

Banks

• Investment returns



- At t = 0 agents know that $s \sim U(0,1)$
- At t = 1 agents observe s (but as in the model s is not verifiable)

Optimal contract without insurance (i)

• Bank offers a contract with promised payments

$$c_{1} \text{ and } c_{2} = \begin{cases} \frac{(1 - \lambda c_{1})R_{H}}{1 - \lambda} = (2 - c_{1})R_{H} = c_{2H}, \text{ with prob. } s \\ \frac{(1 - \lambda c_{1})R_{L}}{1 - \lambda} = (2 - c_{1})R_{L} = c_{2L}, \text{ with prob. } 1 - s \end{cases}$$

• Late consumers will run on the bank if

$$E(c_2) = su(c_{2H}) + (1 - s)u(c_{2L}) < u(c_1)$$

$$\to s < \overline{s} = \frac{u(c_1) - u(c_{2L})}{u(c_{2H}) - u(c_{2L})}$$

 \rightarrow In which case all consumers get $c_1 = c_2 = 1$

Optimal contract without insurance (ii)

- There is a bank run with probability $\overline{s} = \Pr(s < \overline{s})$
 - \rightarrow Early and late consumers get u(1)
- There is no bank run with probability $1 \overline{s} = \Pr(s \ge \overline{s})$
 - \rightarrow Early consumers get $u(c_1)$
 - → Late consumers get

$$E(s|s \ge \overline{s})u(c_{2H}) + E(1-s|s \ge \overline{s})u(c_{2L})$$

$$= \frac{1+\overline{s}}{2}u(c_{2H}) + \frac{1-\overline{s}}{2}u(c_{2L})$$

Optimal contract without insurance (iii)

• Banks maximize

$$V(c_1) = \overline{s}u(1) + (1 - \overline{s}) \left\{ \frac{1}{2}u(c_1) + \frac{1}{2} \left[\frac{1 + \overline{s}}{2}u(c_{2H}) + \frac{1 - \overline{s}}{2}u(c_{2L}) \right] \right\}$$

where
$$c_{2H} = (2 - c_1)R_H$$
 and $c_{2L} = (2 - c_1)R_L$

Optimal contract with insurance (i)

- Suppose that insurer pays $\delta > 0$ to late consumers when
 - \rightarrow The return on the investment at t = 2 is R_L
- Late consumers will now run on the bank if

$$E(c_2) = su(c_{2H}) + (1 - s)u(c_{2L} + \delta) < u(c_1)$$

$$\to s < \overline{s} = \frac{u(c_1) - u(c_{2L} + \delta)}{u(c_{2H}) - u(c_{2L} + \delta)}$$

- \rightarrow In which case all consumers get $c_1 = c_2 = 1$
- → Insurer pays zero when there is a bank run

Optimal contract with insurance (ii)

• Banks maximize

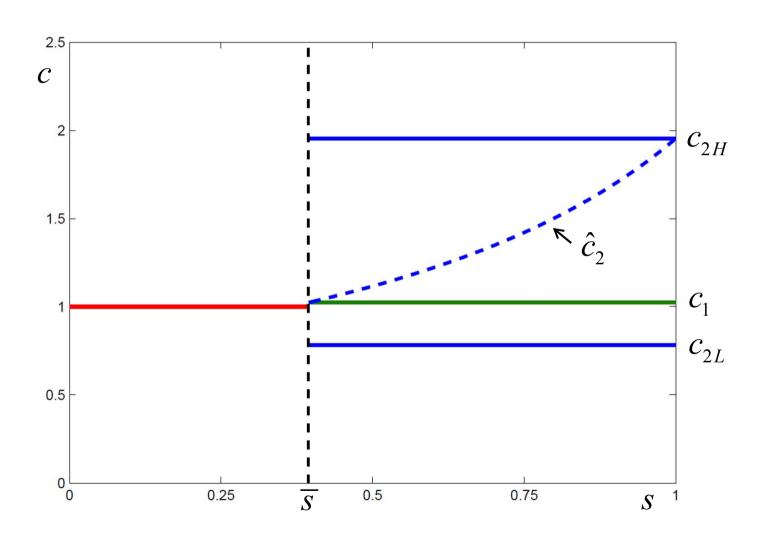
$$V(c_1) = \overline{s}u(1) + (1 - \overline{s}) \left\{ \frac{1}{2}u(c_1) + \frac{1}{2} \left[\frac{1 + \overline{s}}{2}u(c_{2H}) + \frac{1 - \overline{s}}{2}u(c_{2L} + \delta) \right] \right\}$$

where
$$c_{2H} = (2 - c_1)R_H$$
 and $c_{2L} = (2 - c_1)R_L$

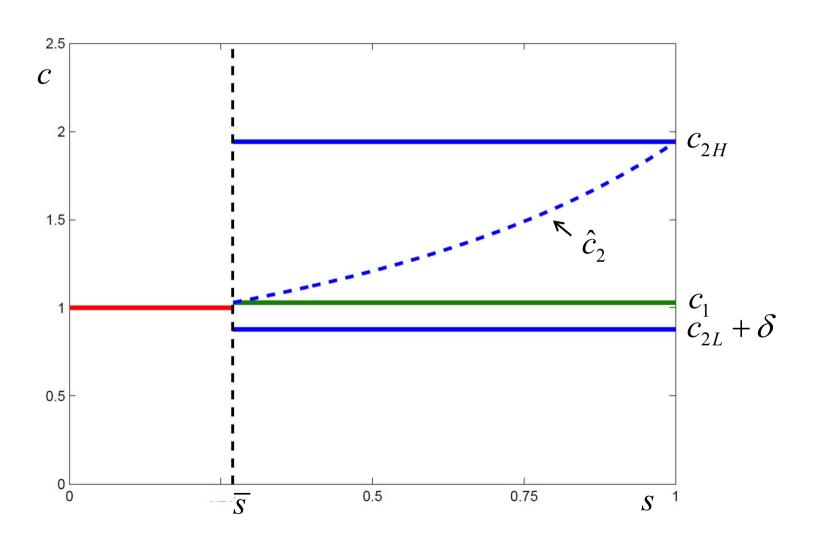
Numerical illustration

- Assumptions
 - \rightarrow Risk aversion $\gamma_L = 2$ (and $\gamma_H = 5$)
 - $\rightarrow R_H = 2$ and $R_L = 0.8$
- ullet Compute effect of deposit insurance δ on
 - \rightarrow Early and late consumption (if no run) c_1, c_{2H}, c_{2L}
 - \rightarrow Certainty equivalent \hat{c}_2 s.t. $u(\hat{c}_2) = su(c_{2H}) + (1-s)u(c_{2L})$
 - \rightarrow Probability of run $\overline{s} = \Pr(s < \overline{s})$
- Compute optimal deposit insurance

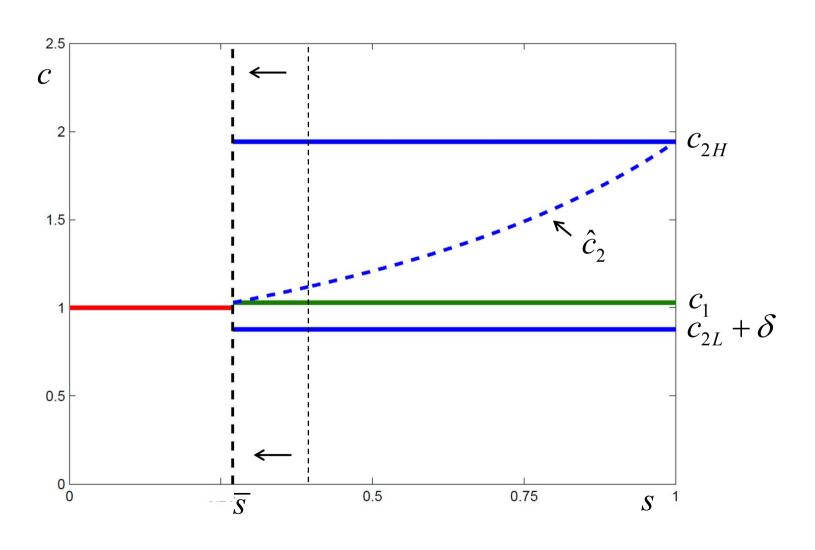
Equilibrium consumption without insurance



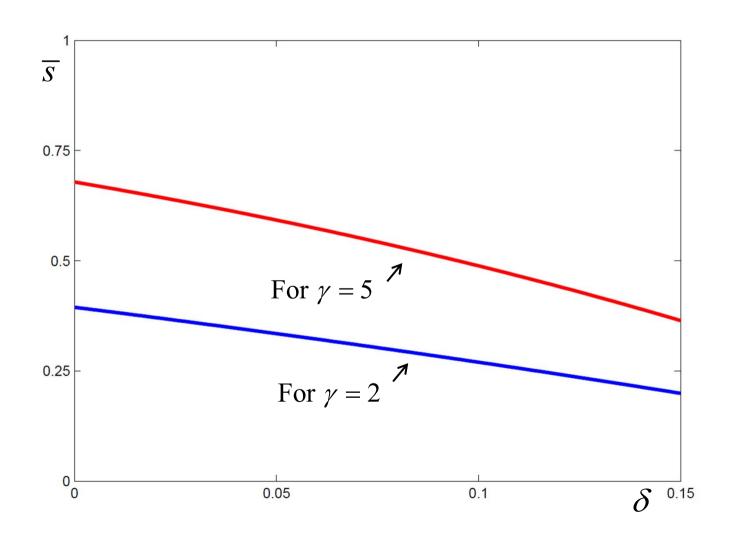
Equilibrium consumption with insurance



Equilibrium consumption with insurance



Effect of insurance on probability of run



Optimal deposit insurance

• Tax revenues needed to cover expected insurance payouts

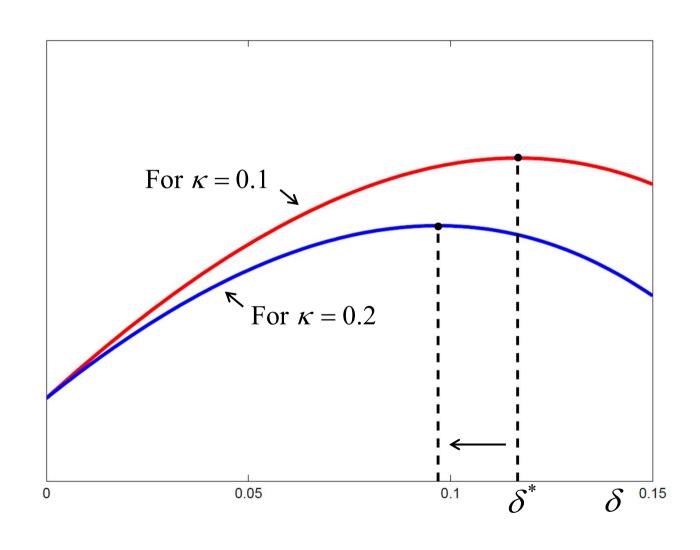
$$T(\delta) = (1 - \overline{s}) \frac{1}{2} E(1 - s \mid s \ge \overline{s}) \delta = \left(\frac{1 - \overline{s}}{2}\right)^2 \delta$$

• Social welfare

$$W(\delta) = V(c_1(\delta)) - (1+\kappa)T(\delta)$$

- \rightarrow where κ denotes the net social cost of public funds
- Notice that $u'(c) = c^{-\gamma}$ implies u'(1) = 1
 - → Marginal utility of early consumers is approximately 1

Optimal deposit insurance



Concluding remarks

- Simplified version of model
 - → Provides intuition for results of paper
 - → Without assumption that early consumers are repaid first
- Numerical results are very sensitive to parameter values
 - \rightarrow For example, the effect of risk aversion γ
- Diamond and Dybvig (1983) is a very special model
 - → Is it useful to give precise policy recommendations?